STUDY ON RACEMIZATION IN OXIDATION-REDUCTION CONDENSATION BY THE COUPLING REACTION FOR THE FORMATION OF BOC-LEU-ILE-ASP(NH $_2$)-LEU-OBU $^{\rm t}$

Rei MATSUEDA, Hidekuni TAKAHAGI, and Teruaki MUKAIYAMA*
Central Research Laboratories and Product Development
Laboratories, Sankyo Co., Ltd., Hiromachi, Shinagawa-ku,
Tokyo 140

* Department of Chemistry, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

Racemization in the oxidation-reduction condensation was studied by the coupling reaction for the formation of Boc-Leu-Ile-Asp(NH $_2$)-Leu-OBu $^{\rm t}$, recently reported for the detection of racemization in the azide, dicyclohexylcarbodiimide + l-hydroxybenzotriazole methods, etc. The coupling reaction using triphenylphosphine and 2,2'-dithiodipyridine-l,l'-dioxide gave favorable results to the present racemization test on solid support as well as in solution synthesis.

It has been reported recently that formation of D-alloisoleucine through coupling of Boc-Leu-Ile-OH and H-Asp(NH₂)-Leu-OBu^t in dimethylformamide (DMF) was employed for the detection of the racemization in azide, dicyclohexylcarbodiimide (DCC) + 1-hydroxybenzotriazole (HOBt), and other coupling methods.

In the present communication, suitable combination of oxidant and reductant in oxidation-reduction condensation was studied in this racemization test since a wide range of activation is possibly chosen by changing the nature of the oxidant or reductant as discussed in the previous report 2 .

In the preceding reports, it has been shown that oxidation-reduction condensation by the use of triphenylphosphine (Ph₃P) and 2,2'-dipyridyl disulfide $((PyS)_2)^3$ can be successfully applied to the syntheses of LH-RH⁴) and ACTH(1-24)^{5),2)} via fragment condensation on a solid support without accompanying any detectable racemization.

First of all, chain elongation from C-terminal amino acid to N-terminal amino acid (A type elongation) on solid support by coupling of Boc-Leu-Ile-OH with H-Asp(NH₂)-Leu-resin⁶) containing 0.26 mmol/g of the dipeptide was tried in DMF under the conditions used in the Young test⁷) but the coupling yield was 37% and extent of racemization⁸) was 4.97%. Then the same reaction was tried at room temperature by using 2,2'-dithiodipyridine-1,1'-dioxide $((Py(0)S)_2)^9$ in place of $(PyS)_2$ as an oxidant since it was assumed that the key intermediate of the reaction, phosphorane, would be able to keep the pentacovalent structure²),3) at temperatures higher than -30°C and favorable results were obtained as shown in Table I. In a typical experiment, 100 mg of H-Asp(NH₂)-Leu-resin, 3 eq each of Boc-Leu-Ile-OH,

B type chain

 $(\mathrm{Py}(0)\mathrm{S})_2$ and 6 eq of 2-mercaptopyridine N-oxide $(\mathrm{Py}(0)\mathrm{SH})$ were suspended in 1 ml of DMF at 0°C. After stirring for a few min, 3 eq of $\mathrm{Ph}_3\mathrm{P}$ was added and stirred for 2 hr at 0°C and additional 22 hr at room temperature and followed by the washing procedures²). The amino acid ratios of the resulting peptide-resin after hydrolysis with propionic acid - 12 N HCl¹⁰) were as follows: Asp, 1.00; Ile + D-allo-Ile, 1.04; Leu, 1.98. These results show that coupling is quantitative and extent of racemization is 1.89%. This means that the extent of racemization during coupling reaction may be less than 1% since racemizations after hydrolyses of the peptide-resin of the stepwise synthesis and Ac-Ile-OH are 1.42% and 1.18% respectively. This procedure also gave favorable results in the case of a steric hindered amino component of H-Val-resin containing 0.12 mmol/g of Val and in the chain elongation from N-terminal amino acid to C-terminal amino acid (B type elongation) by coupling reaction of resin-Leu-Ile-OH⁶) containing 0.25 mmol/g of the peptide with H-Asp(NH₂)-Leu-OBu^t.

erongation on soria support					
	Coupling conditions ^{a)}	Coupling yield,	Extent of racemization,		
	1. I	37	4.97		
A type chain	2. I repeated 3 times	quant.	5.72		
elongation	3. II	quant.	1.89		
	4. Coupling of Boc-Leu-Ile-OH with H-Val-resin by II	quant.	2.02		
Blank	5. Stepwise synthesisb)	quant.	1.42		

Table 1. Racemization test in DMF by A type and B type chain elongation on solid support

~quant.

quant.

7.65

2.02

I repeated twice

II

Next, these procedures were further studied on the peptide formation in solution and the results are summarized in Table 2.

When Ph_3P and $(PyS)_2$ were used as coupling reactants at $-30^{\circ}C$, the reaction was slow and not completed within 10 hr and the procedure for decomposition of the intermediate, phosphorane, was necessary since it increases reactivity at temperatures higher than $-30^{\circ}C$ causing racemization during the separation procedures at room temperature. This problem was solved by lowering the reactivity to carry out the coupling reaction at room temperature. A reaction using Ph_3P and $(Py(0)S)_2$ at room temperature also gave favorable results in solution.

a) I: 3 eq of carboxyl or amino component, Ph₃P, (PyS)₂ and 6 eq of PySH, 8 hr at -30°.

II: 3 eq of carboxyl or amino component, Ph_3P , $(Py(0)S)_2$ and 6 eq of Py(0)SH, 2 hr at $O^{O}C$ and 22 hr at room temperature.

b) Starting with $H-Asp(NH_2)-Leu-resin$, Boc-Ile-OH and Boc-Leu-OH were successively coupled in CH_2Cl_2 by Ph_3P and $(PyS)_2$.

Table 2.	Preparation	of $Boc-Leu-Ile-Asp(NH_2)-Leu-OBu^t$	in	DMF
	by solution			

	Reaction conditions	Yield, %	Extent of racemization, a) %	
1.	$Ph_3P + (PyS)_2 + 2 PySH, 10 hr at -30°C$	43.3	10.2 ^{b)}	
2.	$Ph_3P + (PyS)_2 + 2 PySH, 10 hr at -30^{\circ}C$ $Ph_3P + (PyS)_2 + 2 HONB^{\circ}, 2 hr at -15^{\circ}C,$			
5 hr at room temp.		70.2	3.59	
3.	. $Ph_3P + (Py(0)S)_2 + 2 Py(0)SH$, 0.5 hr at $0^{\circ}C$,			
	5 hr at room temp.	78.2	1.82	
4.	Stepwise synthesis ^{d)}	_	0.93	
	Azide method (Rudinger)	47.8 ^{e)}	1.4 ± 0.4^{e}	
	" " (Curtius)	59.3 ^{e)}	11.2 ± 0.8^{e}	
	DCC + HOBt	45.6 ^{e)}	7.5 ± 3^{e}	

- a) Hydrolyses of samples were performed at the same time in 12 N HCl at 110° C for 24 hr.
- b) Difference between this value and the value of $24.7 \pm 2.1\%$ reported in the literature¹⁾ may be due to the lack of the decomposition of the remaining intermediate, phosphorane, in the latter case since experiment without decomposition procedure¹¹⁾ gave 20.6%.
- c) N-hydroxy-5-norbornene-endo-2,3-dicarboxiimide is known¹⁾ as the best additive in DCC method to the present racemization test.
- d) Starting with H-Asp(NH₂)-Leu-OBu^t, the tetrapeptide was prepared by coupling successively with Z-Ile-OH, Boc-Leu-OH by Ph₃P and (PyS)₂.
- e) Data reported in the literature 1).

In a typical experiment, triphenylphosphine (0.5 mmol) in 0.5 ml of DMF was added at 0°C to a stirred mixture of 0.5 mmol each of Boc-Leu-Ile-OH, H-Asp(NH₂)-Leu-OBu^t, $(Py(0)S)_2$ and 1 mmol of Py(0)SH in 1 ml of DMF. After stirring for 30 min at 0°C and 5 hr at room temperature, the solvent was evaporated in vacuo and the residue was applied to Sephadex LH-20 in EtOH. Boc-Leu-Ile-Asp(NH₂)-Leu-OBu^t was obtained as a white solid after evaporation of solvent, 246 mg (78.2%): mp 205~6°, $(\alpha)_D^{20}$ -57.6° (c 2, MeOH). Found: C, 59.29; H, 9.19; N, 11.45. Calcd for $C_{31}^{H}_{57}^{O}_{8}^{N}_{5}$: C, 59.30; H, 9.15; N, 11.16. Amino acid ratios are as follows: Asp, 1.00; Ile + D-allo-Ile, 1.05; Leu, 2.16; extent of racemization, 1.82%.

 the nature of carboxyl and amino component and reaction conditions such as temperature, solvent, concentration, etc, in the recently shown approach 2 , 4 , 5) of solid phase peptide synthesis with monitoring technique by high-pressure liquid chromatography. Among these combinations, it should be noted from the standpoint of generality and availability that Ph₃P and $(PyS)_{2}$ are most common combination for usual peptide synthesis both in solution and on a solid support by either chain elongation via fragment condensation or stepwise synthesis. The use of $(Py(0)S)_{2}$ as oxidant in place of $(PyS)_{2}$ is effectively employed in fragment condensation reactions in DMF and the use of tri-p-anisylphosphine 20) as reductant in place of Ph₃P promotes the coupling reaction in stepwise synthesis on solid support.

References and Notes

- M. Fujino, PRF (published by Protein Research Foundation, Minoh City, Osaka), 2, No. 3, 21 (1976). Extents of racemization¹⁰⁾ in various coupling methods except those shown in table 2 are reported as follows: DCC, 26.8 ± 1.1; diphenylphos-phoryl azide, 14.1 ± 2.1; l-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 12.2; DCC + HONSu, 2.9 ± 0.5; DCC + N-hydroxy-5-norbornene-endo-2,3-dicarboxiimide, 0.8 ± 0.4%.
- 2) R. Matsueda, H. Maruyama, E. Kitazawa, H. Takahagi, and T. Mukaiyama, Proceedings of the Fourth American Peptide Symposium (published by Ann Arbor Science Publishers, Mich.), p403 (1975). ibid, Bull. Chem. Soc. Japan, 49, 2259 (1976).
- 3) T. Mukaiyama, R. Matsueda, and M. Suzuki, Tetrahedron Lett. 1901 (1970).
- 4) R. Matsueda, H. Maruyama, E. Kitazawa, H. Takahagi, and T. Mukaiyama, Bull. Chem. Soc. Japan, 46, 3240 (1973).
- 5) R. Matsueda, H. Maruyama, E. Kitazawa, H. Takahagi, and T. Mukaiyama, J. Amer. Chem. Soc., 97, 2573 (1975).
- 6) Prepared according to the method described in the previous report 4).
- 7) M.W. Williams and G.T. Young, J. Chem. Soc., 881 (1963).
- 8) Extent of racemization is expressed by (D-allo-Ile/Ile+D-allo-Ile) x 100%.
- 9) Prepared by oxidation of 2-mercaptopyridine N-oxide with ${\rm H_2O_2}$ (J. Bernstein et al, U.S. patent No. 2,742,476 (1956)).
- 10) F.C. Westall, J. Scotchler, and A.B. Robinson, J. Org. Chem., <u>37</u>, 3363 (1972).
- 11) Hydrolysis by the addition of 1 N KOH to the reaction mixture at -30° C before evaporation of solvent was used.
- 12) Favorable result in Young test (72% yield, L isomer 96%) is also obtained in solution synthesis by Dr. M. Ueki (Department of Chemistry, Science University of Tokyo, Kagurazaka, Tokyo 162) with the reaction using Ph₃P, (Py(0)S)₂ and 2 Py(0)SH, 8 hr at -15°C in DMF.
- 13) P.G. Pearson, J. Amer. Chem. Soc., <u>84</u>, 16 (1962) and <u>85</u>, 3533 (1963).
- 14) T. Mukaiyama and M. Ueki, Proceedings of the 6th Japanese Peptide Symposium (published by Protein Research Foundation, Minoh City, Osaka), p 9 (1968).
- 15) T. Mukaiyama, M. Ueki, H. Maruyama, and R. Matsueda, Japanese patent No. 622838 and No. 622840 (1971).
- 16) T. Mukaiyama, M. Ueki, H. Maruyama, and R. Matsueda, ibid, No. 720113 (1974).
- 17) R. Matsueda, H. Maruyama, M. Ueki and T. Mukaiyama, Bull. Chem. Soc. Japan, <u>44</u>, 1373 (1971).
- 18) C. Birr, M. Ueki, and R. Frank, Proceedings of Fourth American Peptide Symposium, 409 (1975).
- 19) T. Mukaiyama, K. Goto, R. Matsueda and M. Ueki, Tetrahedron Lett., 5293 (1970).
- 20) M. Ueki, T. Shishikura, A. Hayashida, and T. Mukaiyama, Chem. Lett., 733 (1973).